Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Lab Chip ; 24(6): 1557-1572, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38205530

RESUMO

Enzymatically isolated pancreatic islets are the most commonly used ex vivo testbeds for diabetes research. Recently, precision-cut living slices of human pancreas are emerging as an exciting alternative because they maintain the complex architecture of the endocrine and exocrine tissues, and do not suffer from the mechanical and chemical stress of enzymatic isolation. We report a fluidic pancreatic SliceChip platform with dynamic environmental controls that generates a warm, oxygenated, and bubble-free fluidic pathway across singular immobilized slices with continuous deliver of fresh media and the ability to perform repeat serial perfusion assessments. A degasser ensures the system remains bubble-free while systemic pressurization with compressed oxygen ensures slice medium remains adequately oxygenated. Computational modeling of perfusion and oxygen dynamics within SliceChip guide the system's physiomimetic culture conditions. Maintenance of the physiological glucose dependent insulin secretion profile across repeat perfusion assessments of individual pancreatic slices kept under physiological oxygen levels demonstrated the culture capacity of our platform. Fluorescent images acquired every 4 hours of transgenic murine pancreatic slices were reliably stable and recoverable over a 5 day period due to the inclusion of a 3D-printed bioinert metallic anchor that maintained slice position within the SliceChip. Our slice on a chip platform has the potential to expand the useability of human pancreatic slices for diabetes pathogenesis and the development of new therapeutic approaches, while also enabling organotypic culture and assessment of other tissue slices such as brain and patient tumors.


Assuntos
Diabetes Mellitus , Ilhotas Pancreáticas , Humanos , Camundongos , Animais , Sistemas Microfisiológicos , Pâncreas , Ilhotas Pancreáticas/metabolismo , Oxigênio/metabolismo
2.
Trends Endocrinol Metab ; 35(2): 151-163, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37949732

RESUMO

Shortly after diagnosis of type 1 diabetes mellitus (T1DM) and initiation of insulin therapy, many patients experience a transient partial remission (PR) phase, also known as the honeymoon phase. This phase presents a potential therapeutic opportunity due to its association with immunoregulatory and ß cell-protective mechanisms. However, the lack of biomarkers makes its characterization difficult. In this review, we cover the current literature addressing the discovery of new predictive and monitoring biomarkers that contribute to the understanding of the metabolic, epigenetic, and immunological mechanisms underlying PR. We further discuss how these peripheral biomarkers reflect attempts to arrest ß cell autoimmunity and how these can be applied in clinical practice.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Insulina/uso terapêutico , Biomarcadores , Autoimunidade , Células Secretoras de Insulina/metabolismo
3.
Cell Metab ; 35(11): 1944-1960.e7, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37898119

RESUMO

Human pancreatic plasticity is implied from multiple single-cell RNA sequencing (scRNA-seq) studies. However, these have been invariably based on static datasets from which fate trajectories can only be inferred using pseudotemporal estimations. Furthermore, the analysis of isolated islets has resulted in a drastic underrepresentation of other cell types, hindering our ability to interrogate exocrine-endocrine interactions. The long-term culture of human pancreatic slices (HPSs) has presented the field with an opportunity to dynamically track tissue plasticity at the single-cell level. Combining datasets from same-donor HPSs at different time points, with or without a known regenerative stimulus (BMP signaling), led to integrated single-cell datasets storing true temporal or treatment-dependent information. This integration revealed population shifts consistent with ductal progenitor activation, blurring of ductal/acinar boundaries, formation of ducto-acinar-endocrine differentiation axes, and detection of transitional insulin-producing cells. This study provides the first longitudinal scRNA-seq analysis of whole human pancreatic tissue, confirming its plasticity in a dynamic fashion.


Assuntos
Células Endócrinas , Análise da Expressão Gênica de Célula Única , Humanos , Pâncreas , Diferenciação Celular
4.
Nutrients ; 13(2)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572759

RESUMO

BACKGROUND: The Mediterranean diet (MD) could be involved in the regulation of different miRNAs related to metabolic syndrome (MS). METHODS: We analyzed the serum level of mir-let7a-5p, mir-21, mir-590, mir-107 and mir-192 in patients with morbid obesity and its association with the MD and MS. RESULTS: There is an association between the adherence to MD and higher serum levels of mir-590. Mir-590 was lower in those patients who consumed >2 commercial pastries/week. Mir-let7a was lower in those who consumed ≥1 sweetened drinks, in those who consumed ≥3 pieces of fruit/day and in those who consumed less red than white meat. A lower mir-590 and mir-let7a, and a higher mir-192 level, were found in patients who met the high-density lipoprotein cholesterol (HDL) criterion of MS. A higher mir-192 was found in those patients who met the triglyceride criterion of MS and in those with type 2 diabetes (T2DM). CONCLUSIONS: There is an association between specific serum levels of miRNAs and the amount and kind of food intake related to MD. Mir-590 was positively associated with a healthy metabolic profile and type of diet, while mir-192 was positively associated with a worse metabolic profile. These associations could be suggestive of a possible modulation of these miRNAs by food.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Dieta Mediterrânea/estatística & dados numéricos , Síndrome Metabólica/etiologia , MicroRNAs/sangue , Obesidade Mórbida/sangue , Fatores de Risco Cardiometabólico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/prevenção & controle , Inquéritos sobre Dietas , Ingestão de Alimentos/fisiologia , Feminino , Humanos , Incidência , Masculino , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/prevenção & controle , Pessoa de Meia-Idade , Obesidade Mórbida/complicações , Obesidade Mórbida/dietoterapia , Cooperação do Paciente/estatística & dados numéricos
5.
JCI Insight ; 5(8)2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32324170

RESUMO

In type 1 diabetes (T1D), autoimmune destruction of pancreatic ß cells leads to insulin deficiency and loss of glycemic control. However, knowledge about human pancreas pathophysiology in T1D remains incomplete. To address this limitation, we established a pancreas tissue slice platform of donor organs with and without diabetes, facilitating the first live cell studies of human pancreas in T1D pathogenesis to our knowledge. We show that pancreas tissue slices from organ donors allow thorough assessment of processes critical for disease development, including insulin secretion, ß cell physiology, endocrine cell morphology, and immune infiltration within the same donor organ. Using this approach, we compared detailed pathophysiological profiles for 4 pancreata from donors with T1D with 19 nondiabetic control donors. We demonstrate that ß cell loss, ß cell dysfunction, alterations of ß cell physiology, and islet infiltration contributed differently to individual cases of T1D, allowing insight into pathophysiology and heterogeneity of T1D pathogenesis. Thus, our study demonstrates that organ donor pancreas tissue slices represent a promising and potentially novel approach in the search for successful prevention and reversal strategies of T1D.


Assuntos
Diabetes Mellitus Tipo 1/fisiopatologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Pâncreas/fisiopatologia , Técnicas de Cultura de Tecidos , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Doadores de Tecidos , Adulto Jovem
6.
Stem Cell Reports ; 12(3): 611-623, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30773486

RESUMO

The transplantation of human embryonic stem cell (hESC)-derived insulin-producing ß cells for the treatment of diabetes is finally approaching the clinical stage. However, even with state-of-the-art differentiation protocols, a significant percentage of undefined non-endocrine cell types are still generated. Most importantly, there is the potential for carry-over of non-differentiated cell types that may produce teratomas. We sought to modify hESCs so that their differentiated progeny could be selectively devoid of tumorigenic cells and enriched for cells of the desired phenotype (in this case, ß cells). Here we report the generation of a modified hESC line harboring two suicide gene cassettes, whose expression results in cell death in the presence of specific pro-drugs. We show the efficacy of this system at enriching for ß cells and eliminating tumorigenic ones both in vitro and in vivo. Our approach is innovative inasmuch as it allows for the preservation of the desired cells while eliminating those with the potential to develop teratomas.


Assuntos
Carcinogênese/patologia , Células-Tronco Embrionárias Humanas/patologia , Células Secretoras de Insulina/patologia , Animais , Carcinogênese/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Teratoma/genética , Teratoma/patologia
7.
Diabetologia ; 60(8): 1409-1422, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28500393

RESUMO

AIMS/HYPOTHESIS: MicroRNAs (miRNAs) are key regulators of gene expression and novel biomarkers for many diseases. We investigated the hypothesis that serum levels of some miRNAs would be associated with islet autoimmunity and/or progression to type 1 diabetes. METHODS: We measured levels of 93 miRNAs most commonly detected in serum. This retrospective cohort study included 150 autoantibody-positive and 150 autoantibody-negative family-matched siblings enrolled in the TrialNet Pathway to Prevention Study. This was a young cohort (mean age = 11 years), and most autoantibody-positive relatives were at high risk because they had multiple autoantibodies, with 39/150 (26%, progressors) developing type 1 diabetes within an average 8.7 months of follow-up. We analysed miRNA levels in relation to autoantibody status, future development of diabetes and OGTT C-peptide and glucose indices of disease progression. RESULTS: Fifteen miRNAs were differentially expressed when comparing autoantibody-positive/negative siblings (range -2.5 to 1.3-fold). But receiver operating characteristic (ROC) analysis indicated low specificity and sensitivity. Seven additional miRNAs were differentially expressed among autoantibody-positive relatives according to disease progression; ROC returned significant AUC values and identified miRNA cut-off levels associated with an increased risk of disease in both cross-sectional and survival analyses. Levels of several miRNAs showed significant correlations (r values range 0.22-0.55) with OGTT outcomes. miR-21-3p, miR-29a-3p and miR-424-5p had the most robust associations. CONCLUSIONS/INTERPRETATION: Serum levels of selected miRNAs are associated with disease progression and confer additional risk of the development of type 1 diabetes in young autoantibody-positive relatives. Further studies, including longitudinal assessments, are warranted to further define miRNA biomarkers for prediction of disease risk and progression.


Assuntos
Autoanticorpos/imunologia , Autoimunidade/fisiologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/imunologia , MicroRNAs/sangue , Adolescente , Criança , Pré-Escolar , Feminino , Teste de Tolerância a Glucose , Humanos , Lactente , Ilhotas Pancreáticas/imunologia , Masculino , Curva ROC , Estudos Retrospectivos
8.
Trends Endocrinol Metab ; 27(3): 153-162, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26774512

RESUMO

Islet transplantation is an effective cell therapy for type 1 diabetes (T1D) but its clinical application is limited due to shortage of donors. After a decade-long period of exploration of potential alternative cell sources, the field has only recently zeroed in on two of them as the most likely to replace islets. These are pluripotent stem cells (PSCs) (through directed differentiation) and pancreatic non-endocrine cells (through directed differentiation or reprogramming). Here we review progress in both areas, including the initiation of Phase I/II clinical trials using human embryonic stem cell (hESc)-derived progenitors, advances in hESc differentiation in vitro, novel insights on the developmental plasticity of the pancreas, and groundbreaking new approaches to induce ß cell conversion from the non-endocrine compartment without genetic manipulation.


Assuntos
Diabetes Mellitus Tipo 1/cirurgia , Transplante das Ilhotas Pancreáticas/efeitos adversos , Ilhotas Pancreáticas/fisiopatologia , Modelos Biológicos , Células-Tronco Adultas/citologia , Células-Tronco Adultas/patologia , Células-Tronco Adultas/fisiologia , Células-Tronco Adultas/transplante , Animais , Diferenciação Celular , Plasticidade Celular , Técnicas de Reprogramação Celular/tendências , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/fisiopatologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/patologia , Células-Tronco Embrionárias Humanas/fisiologia , Células-Tronco Embrionárias Humanas/transplante , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/patologia , Ilhotas Pancreáticas/fisiologia , Transplante das Ilhotas Pancreáticas/tendências
9.
Diabetes ; 64(12): 4123-34, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26307584

RESUMO

The exocrine pancreas can give rise to endocrine insulin-producing cells upon ectopic expression of key transcription factors. However, the need for genetic manipulation remains a translational hurdle for diabetes therapy. Here we report the conversion of adult human nonendocrine pancreatic tissue into endocrine cell types by exposure to bone morphogenetic protein 7. The use of this U.S. Food and Drug Administration-approved agent, without any genetic manipulation, results in the neogenesis of clusters that exhibit high insulin content and glucose responsiveness both in vitro and in vivo. In vitro lineage tracing confirmed that BMP-7-induced insulin-expressing cells arise mainly from extrainsular PDX-1(+), carbonic anhydrase II(-) (mature ductal), elastase 3a (acinar)(-) , and insulin(-) subpopulations. The nongenetic conversion of human pancreatic exocrine cells to endocrine cells is novel and represents a safer and simpler alternative to genetic reprogramming.


Assuntos
Proteína Morfogenética Óssea 7/farmacologia , Transdiferenciação Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/terapia , Células Secretoras de Insulina/efeitos dos fármacos , Pâncreas Exócrino/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Peptídeo C/sangue , Peptídeo C/metabolismo , Linhagem da Célula , Células Cultivadas , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Imunofluorescência , Proteínas de Homeodomínio/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/transplante , Rim , Masculino , Camundongos Nus , Pâncreas Exócrino/metabolismo , Pâncreas Exócrino/patologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Transativadores/metabolismo , Transplante Heterólogo , Transplante Heterotópico
10.
Immunol Res ; 57(1-3): 185-96, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24242759

RESUMO

The ultimate goal of diabetes therapy is the restoration of physiologic metabolic control. For type 1 diabetes, research efforts are focused on the prevention or early intervention to halt the autoimmune process and preserve ß cell function. Replacement of pancreatic ß cells via islet transplantation reestablishes physiologic ß cell function in patients with diabetes. Emerging research shows that microRNAs (miRNAs), noncoding small RNA molecules produced by a newly discovered class of genes, negatively regulate gene expression. MiRNAs recognize and bind to partially complementary sequences of target messenger RNA (mRNA), regulating mRNA translation and affecting gene expression. Correlation between miRNA signatures and genome-wide RNA expression allows identification of multiple miRNA-mRNA pairs in biological processes. Because miRNAs target functionally related genes, they represent an exciting and indispensable approach for biomarkers and drug discovery. We are studying the role of miRNA in the context of islet immunobiology. Our research aims at understanding the mechanisms underlying pancreatic ß cell loss and developing clinically relevant approaches for preservation and restoration of ß cell function to treat insulin-dependent diabetes. Herein, we discuss some of our recent efforts related to the study of miRNA in islet inflammation and islet engraftment. Our working hypothesis is that modulation of the expression of specific microRNAs in the transplant microenvironment will be of assistance in enhancing islet engraftment and promoting long-term function.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/metabolismo , MicroRNAs/genética , Animais , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/terapia , Sobrevivência de Enxerto/genética , Humanos , Inflamação/genética , Inflamação/metabolismo , Ilhotas Pancreáticas/patologia , MicroRNAs/metabolismo , Neovascularização Fisiológica/genética
11.
PLoS One ; 8(1): e55064, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383059

RESUMO

microRNAs (miRNAs) play an important role in pancreatic development and adult ß-cell physiology. Our hypothesis is based on the assumption that each islet cell type has a specific pattern of miRNA expression. We sought to determine the profile of miRNA expression in α-and ß-cells, the main components of pancreatic islets, because this analysis may lead to a better understanding of islet gene regulatory pathways. Highly enriched (>98%) subsets of human α-and ß-cells were obtained by flow cytometric sorting after intracellular staining with c-peptide and glucagon antibody. The method of sorting based on intracellular staining is possible because miRNAs are stable after fixation. MiRNA expression levels were determined by quantitative high throughput PCR-based miRNA array platform screening. Most of the miRNAs were preferentially expressed in ß-cells. From the total of 667 miRNAs screened, the Significant Analysis of Microarray identified 141 miRNAs, of which only 7 were expressed more in α-cells (α-miRNAs) and 134 were expressed more in ß-cells (ß-miRNAs). Bioinformatic analysis identified potential targets of ß-miRNAs analyzing the Beta Cell Gene Atlas, described in the T1Dbase, the web platform, supporting the type 1 diabetes (T1D) community. cMaf, a transcription factor regulating glucagon expression expressed selectively in α-cells (TFα) is targeted by ß-miRNAs; miR-200c, miR-125b and miR-182. Min6 cells treated with inhibitors of these miRNAs show an increased expression of cMaf RNA. Conversely, over expression of miR-200c, miR-125b or miR-182 in the mouse alpha cell line αTC6 decreases the level of cMAF mRNA and protein. MiR-200c also inhibits the expression of Zfpm2, a TFα that inhibits the PI3K signaling pathway, at both RNA and protein levels.In conclusion, we identified miRNAs differentially expressed in pancreatic α- and ß-cells and their potential transcription factor targets that could add new insights into different aspects of islet biology and pathophysiology.


Assuntos
Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , MicroRNAs/genética , Transcriptoma , Adulto , Animais , Linhagem Celular , Biologia Computacional , Humanos , Camundongos , Pessoa de Meia-Idade , Ratos
13.
Cold Spring Harb Protoc ; 2012(9): 962-8, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22949710

RESUMO

Our knowledge of organ ontogeny is largely based on loss-of-function (knockout) or gain-of-function (transgenesis) approaches. However, developmental modulators such as proteins, mRNAs, microRNAs(miRNAs), small interfering RNAs, and other small molecules may complement the above DNA-modifying technologies in a much more direct way. Unfortunately, their use is often limited by the ability of these compounds to cross the placenta and reach physiologically relevant concentrations when administered systemically to the mother. The design of safe and effective techniques to deliver these compounds into the embryo is therefore an area of great scientific potential. In this article we report a new method for introducing developmental modulators into murine embryos by means of direct injection into the heart. Unlike other reported methods that require surgical exposure of the uterus, our percutaneous ultrasound-guided approach allows for the intracardial injection of mouse embryos as early as embryonic day 10.5 (e10.5) and throughout gestation in a minimally invasive manner that largely preserves embryo viability. This system offers a critical advantage over in vitro settings because the effects of any given treatment can be observed without disturbing the native environment of the developing organ. Procedures are described for the delivery and detection of transducible proteins as well as morpholinos designed to block the expression of specific miRNAs within the living embryo.


Assuntos
Biologia do Desenvolvimento/métodos , Coração/efeitos dos fármacos , Coração/embriologia , Injeções/métodos , Animais , Camundongos , Morfolinos/administração & dosagem , Proteínas/administração & dosagem
14.
J Transplant ; 2012: 723614, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22655170

RESUMO

Nonspecific inflammation in the transplant microenvironment results in ß-cell dysfunction and death influencing negatively graft outcome. MicroRNA (miRNA) expression and gene target regulation in transplanted islets are not yet well characterized. We evaluated the impact of inflammation on miRNA expression in transplanted rat islets. Islets exposed in vitro to proinflammatory cytokines and explanted syngeneic islet grafts were evaluated by miRNA arrays. A subset of 26 islet miRNAs was affected by inflammation both in vivo and in vitro. Induction of miRNAs was dependent on NF-κB, a pathway linked with cytokine-mediated islet cell death. RT-PCR confirmed expression of 8 miRNAs. The association between these miRNAs and mRNA target-predicting algorithms in genome-wide RNA studies of ß-cell inflammation identified 238 potential miRNA gene targets. Several genes were ontologically associated with regulation of insulin signaling and secretion, diabetes, and islet physiology. One of the most activated miRNAs was miR-21. Overexpression of miR-21 in insulin-secreting MIN6 cells downregulated endogenous expression of the tumor suppressor Pdcd4 and of Pclo, a Ca(2+) sensor protein involved in insulin secretion. Bioinformatics identified both as potential targets. The integrated analysis of miRNA and mRNA expression profiles revealed potential targets that may identify molecular targets for therapeutic interventions.

15.
Cell Transplant ; 21(7): 1349-60, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22305457

RESUMO

Ischemic preconditioning (IPC) confers tissue resistance to subsequent ischemia in several organs. The protective effects are obtained by applying short periods of warm ischemia followed by reperfusion prior to extended ischemic insults to the organs. In the present study, we evaluated whether IPC can reduce pancreatic tissue injury following cold ischemic preservation. Rat pancreata were exposed to IPC (10 min of warm ischemia followed by 10 min of reperfusion) prior to ~18 h of cold preservation before assessment of organ injury or islet isolation. Pancreas IPC improved islet yields (964 ± 336 vs. 711 ± 204 IEQ/pancreas; p = 0.004) and lowered islet loss after culture (33 ± 10% vs. 51 ± 14%; p = 0.0005). Islet potency in vivo was well preserved with diabetes reversal and improved glucose clearance. Pancreas IPC reduced levels of NADPH-dependent oxidase, a source of reactive oxygen species, in pancreas homogenates versus controls (78.4 ± 45.9 vs. 216.2 ± 53.8 RLU/µg; p = 0.002). Microarray genomic analysis of pancreata revealed upregulation of 81 genes and downregulation of 454 genes (greater than twofold change) when comparing IPC-treated glands to controls, respectively, and showing a decrease in markers of apoptosis and oxidative stress. Collectively, our study demonstrates beneficial effects of IPC of the pancreas prior to cold organ preservation and provides evidence of the key role of IPC-mediated modulation of oxidative stress pathways. The use of IPC of the pancreas may contribute to increasing the quality of donor pancreas for transplantation and to improving organ utilization.


Assuntos
Precondicionamento Isquêmico , Preservação de Órgãos , Pâncreas/fisiologia , Animais , Glicemia/análise , Separação Celular , Diabetes Mellitus Experimental/cirurgia , Regulação da Expressão Gênica , Ilhotas Pancreáticas/citologia , Transplante das Ilhotas Pancreáticas , Masculino , Camundongos , Camundongos Nus , NADPH Oxidases/metabolismo , Estresse Oxidativo , Ratos , Ratos Endogâmicos Lew
16.
Cell Transplant ; 21(8): 1761-74, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22186137

RESUMO

MicroRNAs regulate gene expression by inhibiting translation or inducing target mRNA degradation. MicroRNAs regulate organ differentiation and embryonic development, including pancreatic specification and islet function. We showed previously that miR-7 is highly expressed in human pancreatic fetal and adult endocrine cells. Here we determined the expression profile of miR-7 in the mouse-developing pancreas by RT-PCR and in situ hybridization. MiR-7 expression was low between embryonic days e10.5 and e11.5, then began to increase at e13.5 through e14.5, and eventually decreased by e18. In situ hybridization and immunostaining analysis showed that miR-7 colocalizes with endocrine marker Isl1, suggesting that miR-7 is expressed preferentially in endocrine cells. Whole-mount in situ hybridization shows miR-7 highly expressed in the embryonic neural tube. To investigate the role of miR-7 in development of the mouse endocrine pancreas, antisense miR-7 morpholinos (MO) were delivered to the embryo at an early developmental stage (e10.5 days) via intrauterine fetal heart injection. Inhibition of miR-7 during early embryonic life results in an overall downregulation of insulin production, decreased ß-cell numbers, and glucose intolerance in the postnatal period. This phenomenon is specific for miR-7 and possibly due to a systemic effect on pancreatic development. On the other hand, the in vitro inhibition of miR-7 in explanted pancreatic buds leads to ß-cell death and generation of ß-cells expressing less insulin than those in MO control. Therefore, in addition to the potential indirect effects on pancreatic differentiation derived from its systemic downregulation, the knockdown of miR-7 appears to have a ß-cell-specific effect as well. These findings suggest that modulation of miR-7 expression could be utilized in the development of stem cell therapies to cure diabetes.


Assuntos
Insulina/metabolismo , MicroRNAs/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Pâncreas/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo , Desenvolvimento Embrionário , Células Endócrinas/citologia , Células Endócrinas/metabolismo , Feminino , Intolerância à Glucose , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Morfolinos/farmacologia , Pâncreas/citologia , Pâncreas/metabolismo , Gravidez , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
PLoS One ; 6(8): e22364, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21857924

RESUMO

Alongside Pdx1 and Beta2/NeuroD, the transcription factor MafA has been shown to be instrumental in the maintenance of the beta cell phenotype. Indeed, a combination of MafA, Pdx1 and Ngn3 (an upstream regulator of Beta2/NeuroD) was recently reported to lead to the effective reprogramming of acinar cells into insulin-producing beta cells. These experiments set the stage for the development of new strategies to address the impairment of glycemic control in diabetic patients. However, the clinical applicability of reprogramming in this context is deemed to be poor due to the need to use viral vehicles for the delivery of the above factors. Here we describe a recombinant transducible version of the MafA protein (TAT-MafA) that penetrates across cell membranes with an efficiency of 100% and binds to the insulin promoter in vitro. When injected in utero into living mouse embryos, TAT-MafA significantly up-regulates target genes and induces enhanced insulin production as well as cytoarchitectural changes consistent with faster islet maturation. As the latest addition to our armamentarium of transducible proteins (which already includes Pdx1 and Ngn3), the purification and characterization of a functional TAT-MafA protein opens the door to prospective therapeutic uses that circumvent the use of viral delivery. To our knowledge, this is also the first report on the use of protein transduction in utero.


Assuntos
Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Fatores de Transcrição Maf Maior/metabolismo , Pâncreas/metabolismo , Útero/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Expressão Gênica , Produtos do Gene tat/genética , Produtos do Gene tat/metabolismo , Insulina/genética , Ilhotas Pancreáticas/citologia , Fatores de Transcrição Maf Maior/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/embriologia , Gravidez , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
18.
BMC Genomics ; 11: 509, 2010 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-20860821

RESUMO

BACKGROUND: MicroRNAs are non-coding RNAs that regulate gene expression including differentiation and development by either inhibiting translation or inducing target degradation. The aim of this study is to determine the microRNA expression signature during human pancreatic development and to identify potential microRNA gene targets calculating correlations between the signature microRNAs and their corresponding mRNA targets, predicted by bioinformatics, in genome-wide RNA microarray study. RESULTS: The microRNA signature of human fetal pancreatic samples 10-22 weeks of gestational age (wga), was obtained by PCR-based high throughput screening with Taqman Low Density Arrays. This method led to identification of 212 microRNAs. The microRNAs were classified in 3 groups: Group number I contains 4 microRNAs with the increasing profile; II, 35 microRNAs with decreasing profile and III with 173 microRNAs, which remain unchanged. We calculated Pearson correlations between the expression profile of microRNAs and target mRNAs, predicted by TargetScan 5.1 and miRBase algorithms, using genome-wide mRNA expression data. Group I correlated with the decreasing expression of 142 target mRNAs and Group II with the increasing expression of 876 target mRNAs. Most microRNAs correlate with multiple targets, just as mRNAs are targeted by multiple microRNAs. Among the identified targets are the genes and transcription factors known to play an essential role in pancreatic development. CONCLUSIONS: We have determined specific groups of microRNAs in human fetal pancreas that change the degree of their expression throughout the development. A negative correlative analysis suggests an intertwined network of microRNAs and mRNAs collaborating with each other. This study provides information leading to potential two-way level of combinatorial control regulating gene expression through microRNAs targeting multiple mRNAs and, conversely, target mRNAs regulated in parallel by other microRNAs as well. This study may further the understanding of gene expression regulation in the human developing pancreas.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Pâncreas/embriologia , Pâncreas/metabolismo , Algoritmos , Feminino , Humanos , MicroRNAs/classificação , MicroRNAs/metabolismo , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
Cell Transplant ; 19(8): 1047-54, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20412635

RESUMO

Recombinant proteins are an important tool for research and therapeutic applications. Therapeutic proteins have been delivered to several cell types and tissues and might be used to improve the outcome of the cell transplantation. Recombinant proteins are propagated in bacteria, which will contaminate them with the lypopolysacharide endotoxin found in the outer bacterial membrane. Endotoxin could interfere with in vitro biological assays and is the major pathological factor, which must be removed or inactivated before in vivo administration. Here we describe a one-step protocol in which the endotoxin activity on recombinant proteins is remarkably reduced by transient exposure to acidic conditions. Maximum endotoxin deactivation occurs at acidic pH below their respective isoelectric point (pI). This method does not require additional protein purification or separation of the protein from the endotoxin fraction. The endotoxin level was measured both in vitro and in vivo. For in vitro assessment we have utilized Limulus Amebocyte Lysate method for in vivo the pyrogenic test. We have tested the above-mentioned method with five different recombinant proteins, including a monoclonal antibody clone 5c8 against CD154 produced by hybridomas. More than 99% of endotoxin was deactivated in all of the proteins; the recovery of the protein after deactivation varied between maximum 72.9% and minimum 46.8%. The anti-CD154 clone 5c8 activity remained unchanged as verified by the measurement of binding capability to activated lymphocytes. Furthermore, the effectiveness of this method was not significantly altered by urea, commonly used in protein purification. This procedure provides a simple and cost-efficient way to reduce the endotoxin activity in antibodies and recombinant proteins.


Assuntos
Endotoxinas/química , Proteínas Recombinantes/isolamento & purificação , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Ureia/química
20.
Transplantation ; 87(10): 1442-50, 2009 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-19461479

RESUMO

BACKGROUND: Islet transplantation success depends on the number and quality of islets transplanted. This study aimed at exploring the molecular mechanisms associated with cold pancreas preservation and their impact on islet cell survival and function. METHODS: Rat pancreata were stored in cold University of Wisconsin preservation solution for short (3 hr; control) or long (18 hr) cold ischemia times (CIT). RESULTS: Pancreata exposed to long CIT yielded lower islet numbers and showed reduced cellular viability; isolated islets displayed higher levels of phosphorylated stress-activated protein kinase (c-jun N-terminal Kinase and Mitogen-Activated Protein Kinase-p38), and chemokine (C-C) ligand-3, and lower levels of vascular endothelial growth factor, interleukins (IL)-9 and IL-10. Islets obtained from long-CIT pancreata were functionally impaired after transplantation. Differential proteomic expression in pancreatic tissue after CIT included increased eukaryotic translation elongation factor-1-alpha-1 (apoptosis related) and reduced Clade-B (serine protease inhibitor). CONCLUSIONS: Our study indicates that cold ischemia stimulates inflammatory pathways (chemokine (c-c)ligand-3, phosphorylation of c-jun N-terminal Kinase and mitogen-activated protein kinase-p38, and eukaryotic translation elongation factor-1-alpha-1) and decreases repair/cytoprotective pathways (IL-10, vascular endothelial growth factor, and Clade-B), all of which may negatively affect the quality and mass of islets obtained from a donor pancreas.


Assuntos
Ilhotas Pancreáticas/citologia , Preservação de Órgãos/métodos , Pâncreas/citologia , Adenosina , Alopurinol , Animais , Sobrevivência Celular , Temperatura Baixa , Citocinas/metabolismo , Glutationa , Sobrevivência de Enxerto , Insulina , Ilhotas Pancreáticas/patologia , Ilhotas Pancreáticas/fisiologia , Transplante das Ilhotas Pancreáticas/fisiologia , Masculino , Camundongos , Camundongos Nus , Soluções para Preservação de Órgãos , Fosforilação , Proteínas Quinases/metabolismo , Rafinose , Ratos , Ratos Endogâmicos Lew , Coleta de Tecidos e Órgãos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...